Li, S.W. and Woods, A.W. (2023) ‘Boundary mixing. Part 1. Transport of buoyancy and passive tracer’, Journal of Fluid Mechanics.

Diapycnal mixing plays a key role in the thermohaline circulation of the deep ocean. Field observations have suggested that this mixing is intensified over the rough topography along the boundaries of the ocean. In this study, we experimentally explore the transport of salinity and tracer in a horizontally stirred, stratified fluid with a steady vertical buoyancy flux. The mechanical mixing occurs either uniformly across the tank or near a sidewall.

To compare uniform and boundary mixing, first we explore the steady state dynamics and find that, in both cases, the surfaces of constant density are horizontal. With uniform mixing, vertical transport of buoyancy occurs uniformly throughout the tank while, with boundary mixing, transport is confined to the turbulent region and the interior space remains quiescent and does not mix or have any net movement. We then explore the transient evolution of the stratification when the source of buoyancy is removed from the base of the system.

In the boundary mixing case, the resulting divergence of the turbulent diffusive flux in the boundary region leads to a reduction in the buoyancy of the fluid in the boundary region, and a net upflow develops in the boundary region. In turn, this drives a downwelling in the interior. Vertical gradients in the rate of downwelling lead to stretching of isopycnals and, together, these processes enable the interior stratification to evolve.

The experiments highlight that, with boundary mixing, the main transport of buoyancy occurs near the boundaries even though the interior is stratified; independent measurements of tracer mixing in the interior show that this fluid may be quiescent and stratified even though there is a large flux being transported in the boundary region. This has important implications for the interpretation of mixing data in the ocean.

Li, S.W. and Woods, A.W. (2024) ‘Boundary mixing. Part 2. The impact of ventilation’, Journal of Fluid Mechanics.

Through a combination of laboratory experiments and theoretical models, we investigate the interaction of a mean upwelling through a closed basin with a vertical buoyancy flux. The fluid is mixed by a horizontally oscillating rake, which either traverses the whole basin or which oscillates just near one vertical boundary. We first review the steady state and demonstrate that, in both mixing regimes, the vertical density profile across the basin is controlled by the steady-state balance between the upward advective and diffusive fluxes of salinity as described by the classical model introduced by Munk (Deep-Sea Res., vol. 13, issue 4, 1966, pp. 707–730). However, with boundary mixing, we show that both the upwelling and the buoyancy transport are localised to the mixing zone near the boundary, and the interior fluid is stagnant. We then develop a model to describe the transient evolution of the system if there is either a discrete increase or gradual decrease to the buoyancy flux.

In the boundary mixing case, the change in the buoyancy flux at the lower boundary leads to a change in the buoyancy of the fluid in the boundary mixing region, and this induces a transient, buoyancy-driven flow in the boundary region in addition to the steady upwelling. In turn, an equal and opposite vertical flow develops in the interior, and this leads to a change in the density stratification of the interior fluid as the system adjusts to a new equilibrium. However, in our experiments, there is no vertical mixing in the interior and interior fluid may upwell or downwell dependent on the change to the buoyancy forcing. We discuss the implications of our results for the transport and mixing in the deep ocean, and the associated interpretation of field experiments.